On Permuting Some Coordinates of Polytopes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455819" target="_blank" >RIV/00216208:11320/22:10455819 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-18530-4_8" target="_blank" >https://doi.org/10.1007/978-3-031-18530-4_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-18530-4_8" target="_blank" >10.1007/978-3-031-18530-4_8</a>
Alternative languages
Result language
angličtina
Original language name
On Permuting Some Coordinates of Polytopes
Original language description
Let P subset of R-d be a polytope with coordinates labeled x(1),..., x(d). Define perm(I)(P) to be the polytope obtained by taking every permutation sigma whose set of fixed-points is [d] I, permuting the coordinates of every point in P according to sigma and taking the convex hull of all such points. Also, define sort(P) to be the polytope obtained by taking each vertex of P in "sorted order". In this article we study the extension complexity of perm(I)(P) and sort(P) in terms of the extension complexity of P. A result by Kaibel and Pashkovich states that if sort(P) subset of P and I = [d] then the extension complexity of perm(I)(P) is bounded above by a polynomial of the extension complexity of P. We show that the extension complexity of permI (P) can increase exponentially if I not equal [d] even if the vertices of P contain only three values, say 0, 1, or 2 at each of the coordinates xi for i is an element of I. Furthermore, the extension complexity of sort(P) can be exponentially larger than that of P. We also discuss the implications for the 0/1 case.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
COMBINATORIAL OPTIMIZATION (ISCO 2022)
ISBN
978-3-031-18529-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
13
Pages from-to
102-114
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Online
Event date
May 18, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000897756400008