All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the extension complexity of polytopes separating subsets of the Boolean cube

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00572825" target="_blank" >RIV/67985840:_____/23:00572825 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00454-022-00419-3" target="_blank" >https://doi.org/10.1007/s00454-022-00419-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-022-00419-3" target="_blank" >10.1007/s00454-022-00419-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the extension complexity of polytopes separating subsets of the Boolean cube

  • Original language description

    We show that for every A⊆ { 0 , 1 } n, there exists a polytope P⊆ Rn with P∩ { 0 , 1 } n= A and extension complexity O(2 n/2) , and that there exists an A⊆ { 0 , 1 } n such that the extension complexity of any P with P∩ { 0 , 1 } n= A must be at least 2 n(1-o(1))/3. We also remark that the extension complexity of any 0/1-polytope in Rn is at most O(2 n/ n) and pose the problem whether the upper bound can be improved to O(2 cn) , for c< 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete & Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

    1432-0444

  • Volume of the periodical

    70

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

    268-278

  • UT code for WoS article

    000842571500001

  • EID of the result in the Scopus database

    2-s2.0-85136215911