Generalized probabilistic theories and conic extensions of polytopes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318082" target="_blank" >RIV/00216208:11320/15:10318082 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8113/48/2/025302" target="_blank" >http://dx.doi.org/10.1088/1751-8113/48/2/025302</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/48/2/025302" target="_blank" >10.1088/1751-8113/48/2/025302</a>
Alternative languages
Result language
angličtina
Original language name
Generalized probabilistic theories and conic extensions of polytopes
Original language description
Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPTis equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in R-n, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto theoriginal space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization o
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
—
UT code for WoS article
000346414600010
EID of the result in the Scopus database
2-s2.0-84918503236