On the H-free extension complexity of the TSP
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368356" target="_blank" >RIV/00216208:11320/17:10368356 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11590-016-1029-1" target="_blank" >http://dx.doi.org/10.1007/s11590-016-1029-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11590-016-1029-1" target="_blank" >10.1007/s11590-016-1029-1</a>
Alternative languages
Result language
angličtina
Original language name
On the H-free extension complexity of the TSP
Original language description
It is known that the extension complexity of the TSP polytope for the complete graph is exponential in n even if the subtour inequalities are excluded. In this article we study the polytopes formed by removing other subsets of facet-defining inequalities of the TSP polytope. In particular, we consider the case when is either the set of blossom inequalities or the simple comb inequalities. These inequalities are routinely used in cutting plane algorithms for the TSP. We show that the extension complexity remains exponential even if we exclude these inequalities. In addition we show that the extension complexity of polytope formed by all comb inequalities is exponential. For our proofs, we introduce a subclass of comb inequalities, called (h, t)-uniform inequalities, which may be of independent interest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-11559S" target="_blank" >GA15-11559S: Extended Formulation of Polytopes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Optimization Letters
ISSN
1862-4472
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
445-455
UT code for WoS article
000395206800001
EID of the result in the Scopus database
—