All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the H-free extension complexity of the TSP

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368356" target="_blank" >RIV/00216208:11320/17:10368356 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11590-016-1029-1" target="_blank" >http://dx.doi.org/10.1007/s11590-016-1029-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11590-016-1029-1" target="_blank" >10.1007/s11590-016-1029-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the H-free extension complexity of the TSP

  • Original language description

    It is known that the extension complexity of the TSP polytope for the complete graph is exponential in n even if the subtour inequalities are excluded. In this article we study the polytopes formed by removing other subsets of facet-defining inequalities of the TSP polytope. In particular, we consider the case when is either the set of blossom inequalities or the simple comb inequalities. These inequalities are routinely used in cutting plane algorithms for the TSP. We show that the extension complexity remains exponential even if we exclude these inequalities. In addition we show that the extension complexity of polytope formed by all comb inequalities is exponential. For our proofs, we introduce a subclass of comb inequalities, called (h, t)-uniform inequalities, which may be of independent interest.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-11559S" target="_blank" >GA15-11559S: Extended Formulation of Polytopes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Optimization Letters

  • ISSN

    1862-4472

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

    445-455

  • UT code for WoS article

    000395206800001

  • EID of the result in the Scopus database