All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the extension complexity of combinatorial polytopes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318089" target="_blank" >RIV/00216208:11320/15:10318089 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10107-014-0764-2" target="_blank" >http://dx.doi.org/10.1007/s10107-014-0764-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10107-014-0764-2" target="_blank" >10.1007/s10107-014-0764-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the extension complexity of combinatorial polytopes

  • Original language description

    In this paper we extend recent results of Fiorini et al. on the extension complexity of the cut polytope and related polyhedra. We first describe a lifting argument to show exponential extension complexity for a number of NP-complete problems including subset-sum and three dimensional matching. We then obtain a relationship between the extension complexity of the cut polytope of a graph and that of its graph minors. Using this we are able to show exponential extension complexity for the cut polytope ofa large number of graphs, including those used in quantum information and suspensions of cubic planar graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Programming, Series B

  • ISSN

    0025-5610

  • e-ISSN

  • Volume of the periodical

    153

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    21

  • Pages from-to

    95-115

  • UT code for WoS article

    000361473100007

  • EID of the result in the Scopus database

    2-s2.0-84941997774