On the extension complexity of combinatorial polytopes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10318089" target="_blank" >RIV/00216208:11320/15:10318089 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10107-014-0764-2" target="_blank" >http://dx.doi.org/10.1007/s10107-014-0764-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-014-0764-2" target="_blank" >10.1007/s10107-014-0764-2</a>
Alternative languages
Result language
angličtina
Original language name
On the extension complexity of combinatorial polytopes
Original language description
In this paper we extend recent results of Fiorini et al. on the extension complexity of the cut polytope and related polyhedra. We first describe a lifting argument to show exponential extension complexity for a number of NP-complete problems including subset-sum and three dimensional matching. We then obtain a relationship between the extension complexity of the cut polytope of a graph and that of its graph minors. Using this we are able to show exponential extension complexity for the cut polytope ofa large number of graphs, including those used in quantum information and suspensions of cubic planar graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Programming, Series B
ISSN
0025-5610
e-ISSN
—
Volume of the periodical
153
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
21
Pages from-to
95-115
UT code for WoS article
000361473100007
EID of the result in the Scopus database
2-s2.0-84941997774