All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43897071" target="_blank" >RIV/49777513:23520/11:43897071 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/jgt.20556" target="_blank" >http://dx.doi.org/10.1002/jgt.20556</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.20556" target="_blank" >10.1002/jgt.20556</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach

  • Original language description

    We examine the existing constructions of the smallest known vertex-transitive graphs of a given degree and girth 6. It turns out that most of these graphs can be described in terms of regular lifts of suitable quotient graphs. A further outcome of our analysis is a precise identification of which of these graphs are Cayley.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    265-284

  • UT code for WoS article

    000297056800001

  • EID of the result in the Scopus database