Existence of weak solutions to doubly degenerate diffusion equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43914914" target="_blank" >RIV/49777513:23520/12:43914914 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Existence of weak solutions to doubly degenerate diffusion equations
Original language description
We prove existence of weak solutions to doubly degenerate diffusion equations $dot{u}=Delta_p u^{m-1}+f$ $(m,pge2)$ by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstractsetting, which allows to choose function spaces corresponding to bounded or unbounded domains $Omegasubsetmathbb R^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form$f(u)$ or $div(F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
26
Pages from-to
43-69
UT code for WoS article
000302094000004
EID of the result in the Scopus database
—