On doubly nonlinear evolution equations with non-potential or dynamic relation between the state variables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932748" target="_blank" >RIV/49777513:23520/17:43932748 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00028-016-0342-6" target="_blank" >https://link.springer.com/article/10.1007/s00028-016-0342-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00028-016-0342-6" target="_blank" >10.1007/s00028-016-0342-6</a>
Alternative languages
Result language
angličtina
Original language name
On doubly nonlinear evolution equations with non-potential or dynamic relation between the state variables
Original language description
In this note, after a review of results about abstract doubly nonlinear evolution equations ddtBu+Au=f with non-potential operators B, we consider systems of doubly nonlinear reaction–diffusion equations ∂v∂t−div(a(∇u))=f and concentrate on the one hand on static relations v = b(u) between u and v which are non-potential, i.e. b is not the derivative of a function ϕb, and on the other hand on additional dynamic equations for u with a relaxation time ϵ>0. In the first case, we merely are able to prove existence under rather strong assumptions on B, while in the second case we can relax these conditions to obtain existence for a rather general class of degenerate non-potential operators B.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF EVOLUTION EQUATIONS
ISSN
1424-3199
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
869-881
UT code for WoS article
000404158100011
EID of the result in the Scopus database
2-s2.0-84976259026