All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Application of Lemmatization and Summarization Methods in Topic Identification Module for Large Scale Language Modeling Data Filtering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915504" target="_blank" >RIV/49777513:23520/12:43915504 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-32790-2_23" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-32790-2_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-32790-2_23" target="_blank" >10.1007/978-3-642-32790-2_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Application of Lemmatization and Summarization Methods in Topic Identification Module for Large Scale Language Modeling Data Filtering

  • Original language description

    The paper presents experiments with the topic identification module which is a part of a complex system for acquisition and storing large volumes of text data. The topic identification module processes each acquired data item and assigns it topics from adefined topic hierarchy. The topic hierarchy is quite extensive - it contains about 450 topics and topic categories. It can easily happen that for some narrowly focused topic there is not enough data for the topic identification training. Lemmatizationis shown to improve the results when dealing with sparse data in the area of information retrieval, therefore the effects of lemmatization on topic identification results is studied in the paper. On the other hand, since the system is used for processinglarge amounts of data, a summarization method was implemented and the effect of using only the summary of an article on the topic identification accuracy is studied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LM2010013" target="_blank" >LM2010013: LINDAT-CLARIN: Institute for analysis, processing and distribution of linguistic data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    7499

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    8

  • Pages from-to

    191-198

  • UT code for WoS article

  • EID of the result in the Scopus database