Multiple Petersen subdivisions in permutation graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43918088" target="_blank" >RIV/49777513:23520/13:43918088 - isvavai.cz</a>
Result on the web
<a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p37/pdf" target="_blank" >http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p37/pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multiple Petersen subdivisions in permutation graphs
Original language description
A permutation graph is a cubic graph admitting a 1-factor M whose complement consists of two chordless cycles. Extending results of Ellingham and of Goldwasser and Zhang, we prove that if e is an edge of M such that every 4-cycle containing an edge of Mcontains e, then e is contained in a subdivision of the Petersen graph of a special type. In particular, if the graph is cyclically 5-edge-connected, then every edge of M is contained in such a subdivision. Our proof is based on a characterization of cographs in terms of twin vertices. We infer a linear lower bound on the number of Petersen subdivisions in a permutation graph with no 4-cycles, and give a construction showing that this lower bound is tight up to a constant factor.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ELECTRONIC JOURNAL OF COMBINATORICS
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
1-9
UT code for WoS article
—
EID of the result in the Scopus database
—