Resonance with respect to the Fučík spectrum for non-selfadjoint operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43918878" target="_blank" >RIV/49777513:23520/13:43918878 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0362546X13002460" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0362546X13002460</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2013.07.022" target="_blank" >10.1016/j.na.2013.07.022</a>
Alternative languages
Result language
angličtina
Original language name
Resonance with respect to the Fučík spectrum for non-selfadjoint operators
Original language description
In this paper, we consider a real linear (non-selfadjoint) operator $L: Dom(L) subset L^2(Omega) to L^2(Omega)$ and study the solvability of the problem $Lu - alpha u^{+} + beta u^{-} - g(u) + f = 0$ in the resonance case with respect to the Fuv{c}'{i}k spectrum $Sigma(L)$. We extend the standard Landesman-Lazer type conditions and compare our result with results for selfadjoint operators as well as with results for the resonance in point spectrum (i.e., for $alpha = betainsigma(L)$).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
93
Issue of the periodical within the volume
December 2013
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
147-154
UT code for WoS article
—
EID of the result in the Scopus database
—