All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Spectrum of a Non-Self-Adjoint Quasiperiodic Operator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50019584" target="_blank" >RIV/62690094:18470/21:50019584 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1134/S1064562421060053" target="_blank" >https://link.springer.com/article/10.1134/S1064562421060053</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1134/S1064562421060053" target="_blank" >10.1134/S1064562421060053</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Spectrum of a Non-Self-Adjoint Quasiperiodic Operator

  • Original language description

    We study the operator A, acting in l(2) (Z) by the formula (A,u)(l) = u(l+1) + u(l-1) + lambda e(-2 pi i(theta+omega l))ul. Here, / is an integer variable, while lambda &gt; 0, theta is an element of [0,1), and omega is an element of (0,1) are parameters. For omega is not an element of Q this is the simplest non-self-adjoint quasiperiodic operator. By means of a renormalization technique, we describe the geometry of the spectrum of this operator, compute the Lyapunov exponent on the spectrum, and describe the conditions under which either the spectrum is pure continuous or a point spectrum appears additionally.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Doklady Mathematics

  • ISSN

    1064-5624

  • e-ISSN

    1531-8362

  • Volume of the periodical

    104

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    326-331

  • UT code for WoS article

    000776892300003

  • EID of the result in the Scopus database

    2-s2.0-85127820989