All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On absence of bound states for weakly attractive delta'-interactions supported on non-closed curves in R-2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00458647" target="_blank" >RIV/61389005:_____/16:00458647 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21340/16:00304345

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4939749" target="_blank" >http://dx.doi.org/10.1063/1.4939749</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4939749" target="_blank" >10.1063/1.4939749</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On absence of bound states for weakly attractive delta'-interactions supported on non-closed curves in R-2

  • Original language description

    Let Lambda subset of R-2 be a non-closed piecewise-C-1 curve, which is either bounded with two free endpoints or unbounded with one free endpoint. Let u(+/-)|(Lambda) is an element of L-2 (Lambda) be the traces of a function u in the Sobolev space H-1 (R-2 Lambda) onto two faces of.. We prove that for a wide class of shapes of Lambda the Schrodinger operator H-omega(Lambda) with delta'-interaction supported on. of strength omega is an element of L-infinity(Lambda;R) associated with the quadratic form H-1 (R-2 Lambda) q2 (sic) u bar right arrow integral(2)(R) vertical bar del u vertical bar(2) dx - integral(Lambda) omega vertical bar u(+)vertical bar(Lambda) - u(-)vertical bar Lambda vertical bar(2)ds has no negative spectrum provided that omega is pointwise majorized by a strictly positive function explicitly expressed in terms of Lambda. If, additionally, the domain R-2 Lambda is quasi-conical, we show that sigma(H-omega(Lambda)) = [0,+infinity). For a bounded curve. in our class and non-varying interaction strength omega is an element of R, we derive existence of a constant omega* > 0 such that sigma(H omega(Lambda)) = [0,+infinity) for all omega is an element of (-infinity,omega*]; informally speaking, bound states are absent in the weak coupling regime.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

  • UT code for WoS article

    000371620000027

  • EID of the result in the Scopus database

    2-s2.0-84955488333