Differentiability properties of p-trigonometric functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43921850" target="_blank" >RIV/49777513:23520/14:43921850 - isvavai.cz</a>
Result on the web
<a href="http://ejde.math.txstate.edu/conf-proc/21/g2/girg.pdf" target="_blank" >http://ejde.math.txstate.edu/conf-proc/21/g2/girg.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Differentiability properties of p-trigonometric functions
Original language description
p-trigonometric functions are generalizations of the trigonometric functions. They appear in context of nonlinear differential equations and also in analytical geometry of the p-circle in the plain. The most important p-trigonometric function is $sin_p(x)$. We study smoothness of this functions and convergence of Maclaurin series for p integer bigger than 2.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems (2012).
ISBN
—
ISSN
1072-6691
e-ISSN
—
Number of pages
27
Pages from-to
101-127
Publisher name
Texas State University
Place of publication
San Marcos
Event location
Flagstaff, USA
Event date
Jun 6, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—