All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Differentiability properties of p-trigonometric functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43921850" target="_blank" >RIV/49777513:23520/14:43921850 - isvavai.cz</a>

  • Result on the web

    <a href="http://ejde.math.txstate.edu/conf-proc/21/g2/girg.pdf" target="_blank" >http://ejde.math.txstate.edu/conf-proc/21/g2/girg.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Differentiability properties of p-trigonometric functions

  • Original language description

    p-trigonometric functions are generalizations of the trigonometric functions. They appear in context of nonlinear differential equations and also in analytical geometry of the p-circle in the plain. The most important p-trigonometric function is $sin_p(x)$. We study smoothness of this functions and convergence of Maclaurin series for p integer bigger than 2.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems (2012).

  • ISBN

  • ISSN

    1072-6691

  • e-ISSN

  • Number of pages

    27

  • Pages from-to

    101-127

  • Publisher name

    Texas State University

  • Place of publication

    San Marcos

  • Event location

    Flagstaff, USA

  • Event date

    Jun 6, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article