On the nonexistence of almost Moore digraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43921952" target="_blank" >RIV/49777513:23520/14:43921952 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2013.12.003" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2013.12.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2013.12.003" target="_blank" >10.1016/j.ejc.2013.12.003</a>
Alternative languages
Result language
angličtina
Original language name
On the nonexistence of almost Moore digraphs
Original language description
So far, the problem of the existence of almost Moore digraphs (also called (d,k)-digraphs) has been solved only when d=2,3 or k=2,3,4. In this paper we derive the nonexistence of (d,k)-digraphs, with k}4 and d}3, under the assumption of a certain conjecture related to factorization of polynomials. Moreover, we prove that almost Moore digraphs do not exist for the particular cases when k=5 and d=4,5 or 6.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
EUROPEAN JOURNAL OF COMBINATORICS
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
170-177
UT code for WoS article
—
EID of the result in the Scopus database
—