On the nonexistence of almost Moore digraphs of degree four and five
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43927844" target="_blank" >RIV/49777513:23520/15:43927844 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11786-015-0219-z" target="_blank" >http://dx.doi.org/10.1007/s11786-015-0219-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11786-015-0219-z" target="_blank" >10.1007/s11786-015-0219-z</a>
Alternative languages
Result language
angličtina
Original language name
On the nonexistence of almost Moore digraphs of degree four and five
Original language description
So far, the existence of almost Moore (d, k)-digraphs has only been showed for k = 2, and their nonexistence has been proved for k = 3, 4 and for d = 2, 3 when k GREATER-THAN OR EQUAL TO 3. In this paper, we prove that almost Moore (4, k) and (5, k)-digraphs with self-repeats do not exist for infinitely many primes k.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics in Computer Science
ISSN
1661-8270
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
5
Pages from-to
145-149
UT code for WoS article
000356167700004
EID of the result in the Scopus database
—