Strong parity vertex coloring of plane graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43921980" target="_blank" >RIV/49777513:23520/14:43921980 - isvavai.cz</a>
Result on the web
<a href="http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1796/4394" target="_blank" >http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1796/4394</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Strong parity vertex coloring of plane graphs
Original language description
A strong parity vertex coloring of a 2-connected plane graph is a coloring of the vertices such that every face is incident with zero or an odd number of vertices of each color. We prove that every 2-connected loopless plane graph has a strong parity vertex coloring with 97 colors. Moreover the coloring we construct is proper. This proves a conjecture of Czap and Jendrol' [Discuss. Math. Graph Theory 29 (2009), pp. 521-543.]. We also provide examples showing that eight colors may be necessary (ten whenrestricted to proper colorings).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics and Theoretical Computer Science
ISSN
1462-7264
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
16
Pages from-to
143-158
UT code for WoS article
—
EID of the result in the Scopus database
—