Forbidden subgraphs and the hamiltonian index of a 2-connected graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43922501" target="_blank" >RIV/49777513:23520/14:43922501 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Forbidden subgraphs and the hamiltonian index of a 2-connected graph
Original language description
Hamiltonian index of a graph $G$ is the smallest positive integer $k$, for which the $k$-th iterated line graph $L^k(G)$ is hamiltonian. Bedrossian characterized all pairs of forbidden induced subgraphs that imply hamiltonicity in $2$-connected graphs. In this paper, some upper bounds on the hamiltonian index of a $2$-connected graph in terms of forbidden not necessarily induced subgraphs are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ARS COMBINATORIA
ISSN
0381-7032
e-ISSN
—
Volume of the periodical
117
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
20
Pages from-to
163-182
UT code for WoS article
—
EID of the result in the Scopus database
—