All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Score Normalization Methods Applied to Topic Identification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43922926" target="_blank" >RIV/49777513:23520/14:43922926 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-10816-2_17" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-10816-2_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-10816-2_17" target="_blank" >10.1007/978-3-319-10816-2_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Score Normalization Methods Applied to Topic Identification

  • Original language description

    Multi-label classification plays the key role in modern categorization systems. Its goal is to find a set of labels belonging to each data item. In the multi-label document classification unlike in the multi-class classification, where only the best topic is chosen, the classifier must decide if a document does or does not belong to each topic from the predefined topic set. We are using the generative classifier to tackle this task, but the problem with this approach is that the threshold for the positive classification must be set. This threshold can vary for each document depending on the content of the document (words used, length of the document, ...). In this paper we use the Unconstrained Cohort Normalization, primary proposed for speaker identification/verification task, for robustly finding the threshold defining the boundary between the correct and the incorrect topics of a document. In our former experiments we have proposed a method for finding this threshold inspired by ano

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LM2010013" target="_blank" >LM2010013: LINDAT-CLARIN: Institute for analysis, processing and distribution of linguistic data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue, 17th International Conference, TSD 2014, Brno, Czech Republic, September 8-12, 2014. Proceedings

  • ISBN

    978-3-319-10815-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    133-140

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Brno, Czech Republic

  • Event date

    Sep 8, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article