All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

First Experiments with Relevant Documents Selection for Blind Relevance Feedback in Spoken Document Retrieval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43922934" target="_blank" >RIV/49777513:23520/14:43922934 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/content/pdf/10.1007%2F978-3-319-11581-8_29.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1007%2F978-3-319-11581-8_29.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-11581-8_29" target="_blank" >10.1007/978-3-319-11581-8_29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    First Experiments with Relevant Documents Selection for Blind Relevance Feedback in Spoken Document Retrieval

  • Original language description

    This paper presents our first experiments aimed at the automatic selection of the relevant documents for the blind relevance feedback method in speech information retrieval. Usually the relevant documents are selected only by simply determining the firstN documents to be relevant. We consider this approach to be insufficient and we would try in this paper to outline the possibilities of the dynamical selection of the relevant documents for each query depending on the content of the retrieved documentsinstead of just blindly defining the number of the relevant documents to be used for the blind relevance feedback in advance. We have performed initial experiments with the application of the score normalization techniques used in the speaker identification task, which was successfully used in the multi-label classification task for finding the "correct" topics of a newspaper article in the output of a generative classifier. The experiments have shown promising results, therefore they wi

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LM2010013" target="_blank" >LM2010013: LINDAT-CLARIN: Institute for analysis, processing and distribution of linguistic data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Speech and Computer, 16th International Conference, SPECOM 2014, Novi Sad, Serbia, October 5-9, 2014, Proceedings

  • ISBN

    978-3-319-11580-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    235-242

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Novi Sad, Serbia

  • Event date

    Oct 5, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article