All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Score Normalization Methods for Relevant Documents Selection for Blind Relevance Feedback in Speech Information Retrieval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926462" target="_blank" >RIV/49777513:23520/15:43926462 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-24033-6_36" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-24033-6_36</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-24033-6_36" target="_blank" >10.1007/978-3-319-24033-6_36</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Score Normalization Methods for Relevant Documents Selection for Blind Relevance Feedback in Speech Information Retrieval

  • Original language description

    This paper aims at the automatic selection of the relevant documents for the blind relevance feedback method in speech information retrieval. Usually the relevant documents are selected only by simply determining the first N documents to be relevant. On the contrary, the previous first experiments with the automatic selection of the relevant documents for the blind relevance feedback method has shown the possibilities of the dynamical selection of the relevant documents for each query depending on the content of the retrieved documents instead of just blindly defining the number of the relevant documents to be used in advance. In the first experiments, the World Model Normalization method was used. Based on the promising results, the experiments presented in this paper try to thoroughly examine the possibilities of the application of different score normalization techniques used in the speaker identification task, which was successfully used in the related task of multi-label classification for finding the “correct” topics of a newspaper article in the output of a generative classifier.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/LM2010013" target="_blank" >LM2010013: LINDAT-CLARIN: Institute for analysis, processing and distribution of linguistic data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue, 18th International Conference, TSD 2015, Pilsen, Czech Republic, 14-17, 2015. Proceedings

  • ISBN

    978-3-319-24032-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    316-324

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Pilsen, Czech Republic

  • Event date

    Sep 14, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000365947800036