Score Normalization Methods for Relevant Documents Selection for Blind Relevance Feedback in Speech Information Retrieval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926462" target="_blank" >RIV/49777513:23520/15:43926462 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-24033-6_36" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-24033-6_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-24033-6_36" target="_blank" >10.1007/978-3-319-24033-6_36</a>
Alternative languages
Result language
angličtina
Original language name
Score Normalization Methods for Relevant Documents Selection for Blind Relevance Feedback in Speech Information Retrieval
Original language description
This paper aims at the automatic selection of the relevant documents for the blind relevance feedback method in speech information retrieval. Usually the relevant documents are selected only by simply determining the first N documents to be relevant. On the contrary, the previous first experiments with the automatic selection of the relevant documents for the blind relevance feedback method has shown the possibilities of the dynamical selection of the relevant documents for each query depending on the content of the retrieved documents instead of just blindly defining the number of the relevant documents to be used in advance. In the first experiments, the World Model Normalization method was used. Based on the promising results, the experiments presented in this paper try to thoroughly examine the possibilities of the application of different score normalization techniques used in the speaker identification task, which was successfully used in the related task of multi-label classification for finding the “correct” topics of a newspaper article in the output of a generative classifier.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/LM2010013" target="_blank" >LM2010013: LINDAT-CLARIN: Institute for analysis, processing and distribution of linguistic data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Text, Speech, and Dialogue, 18th International Conference, TSD 2015, Pilsen, Czech Republic, 14-17, 2015. Proceedings
ISBN
978-3-319-24032-9
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
316-324
Publisher name
Springer
Place of publication
Berlin
Event location
Pilsen, Czech Republic
Event date
Sep 14, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000365947800036