All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Relevant Documents Selection for Blind Relevance Feedback in Speech Information Retrieval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929888" target="_blank" >RIV/49777513:23520/16:43929888 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-45510-5_48" target="_blank" >http://dx.doi.org/10.1007/978-3-319-45510-5_48</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-45510-5_48" target="_blank" >10.1007/978-3-319-45510-5_48</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Relevant Documents Selection for Blind Relevance Feedback in Speech Information Retrieval

  • Original language description

    The experiments presented in this paper were aimed at the selection of documents to be used in the blind or pseudo relevance feedback in spoken document retrieval. The previous experiments with the automatic selection of the relevant documents for the blind relevance feedback method have shown the possibilities of the dynamical selection of the relevant documents for each query depending on the content of the retrieved documents instead of just blindly defining the number of the relevant documents to be used in advance. The score normalization techniques commonly used in the speaker identification task are used for the dynamical selection of the relevant documents. In the previous experiments, the language modeling information retrieval method was used. In the experiments presented in this paper, we have derived the score normalization technique also for the vector space information retrieval method. The results of our experiments show, that these normalization techniques are not method-dependent and can be successfully used in several information retrieval system settings.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LM2015071" target="_blank" >LM2015071: Language Research Infrastructure in the Czech Republic</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue 19th International Conference, TSD 2016, Brno , Czech Republic, September 12-16, 2016, Proceedings

  • ISBN

    978-3-319-45509-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    418-425

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Brno, Česká republika

  • Event date

    Sep 12, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389707400048