Maximizing the size of planar graphs under girth constraints
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43924758" target="_blank" >RIV/49777513:23520/14:43924758 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Maximizing the size of planar graphs under girth constraints
Original language description
In 1975, Erdős proposed the problem of determining the maximal number of edges in a graph on n vertices that contains no triangles or squares. In this paper we consider a generalized version of the problem, i.e., what is the maximum size of a graph of order n and girth at least t+1 (containing no cycles of length less than t + 1). We consider the problem on special types of graphs, such as pseudotrees, cacti, graphs lying in a square grid, Halin, generalized Halin and planar graphs. We give the extremalcases, some constructions and we use these results to obtain general lower bounds for the problem in the general case.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Mathematics and Combinatorial Computing
ISSN
0835-3026
e-ISSN
—
Volume of the periodical
89
Issue of the periodical within the volume
Neuveden
Country of publishing house
CA - CANADA
Number of pages
13
Pages from-to
129-141
UT code for WoS article
—
EID of the result in the Scopus database
—