All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Maximizing the size of planar graphs under girth constraints

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43924758" target="_blank" >RIV/49777513:23520/14:43924758 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Maximizing the size of planar graphs under girth constraints

  • Original language description

    In 1975, Erdős proposed the problem of determining the maximal number of edges in a graph on n vertices that contains no triangles or squares. In this paper we consider a generalized version of the problem, i.e., what is the maximum size of a graph of order n and girth at least t+1 (containing no cycles of length less than t + 1). We consider the problem on special types of graphs, such as pseudotrees, cacti, graphs lying in a square grid, Halin, generalized Halin and planar graphs. We give the extremalcases, some constructions and we use these results to obtain general lower bounds for the problem in the general case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Mathematics and Combinatorial Computing

  • ISSN

    0835-3026

  • e-ISSN

  • Volume of the periodical

    89

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    CA - CANADA

  • Number of pages

    13

  • Pages from-to

    129-141

  • UT code for WoS article

  • EID of the result in the Scopus database