On the existence of radial Moore graphs for every radius and every degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43924762" target="_blank" >RIV/49777513:23520/15:43924762 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2015.01.004" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2015.01.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2015.01.004" target="_blank" >10.1016/j.ejc.2015.01.004</a>
Alternative languages
Result language
angličtina
Original language name
On the existence of radial Moore graphs for every radius and every degree
Original language description
The degree/diameter problem is to determine the largest graphs of given maximum degree and given diameter. General upper bounds - called Moore bounds - for the order of such graphs are attainable only for certain special graphs, called Moore graphs. Moore graphs are scarce and so the next challenge is to find graphs which are somehow ''close'' to the nonexistent ideal of a Moore graph by holding fixed two of the parameters, order, diameter and maximum degree, and optimising the third parameter. In thispaper we consider the existence of graphs that have order equal to Moore bound for given radius and maximum degree and as the relaxation we require the diameter to be at most one more than the radius. Such graphs are called radial Moore graphs. In this paper we prove that radial Moore graphs exist for every diameter and every sufficiently large degree, depending on the diameter.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
EUROPEAN JOURNAL OF COMBINATORICS
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
Neuveden
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
15-22
UT code for WoS article
—
EID of the result in the Scopus database
—