All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the existence of radial Moore graphs for every radius and every degree

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43924762" target="_blank" >RIV/49777513:23520/15:43924762 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ejc.2015.01.004" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2015.01.004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2015.01.004" target="_blank" >10.1016/j.ejc.2015.01.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the existence of radial Moore graphs for every radius and every degree

  • Original language description

    The degree/diameter problem is to determine the largest graphs of given maximum degree and given diameter. General upper bounds - called Moore bounds - for the order of such graphs are attainable only for certain special graphs, called Moore graphs. Moore graphs are scarce and so the next challenge is to find graphs which are somehow ''close'' to the nonexistent ideal of a Moore graph by holding fixed two of the parameters, order, diameter and maximum degree, and optimising the third parameter. In thispaper we consider the existence of graphs that have order equal to Moore bound for given radius and maximum degree and as the relaxation we require the diameter to be at most one more than the radius. Such graphs are called radial Moore graphs. In this paper we prove that radial Moore graphs exist for every diameter and every sufficiently large degree, depending on the diameter.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    EUROPEAN JOURNAL OF COMBINATORICS

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    15-22

  • UT code for WoS article

  • EID of the result in the Scopus database