Nonexistence of graphs with cyclic defect
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43897049" target="_blank" >RIV/49777513:23520/11:43897049 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Nonexistence of graphs with cyclic defect
Original language description
In this note we consider graphs of order M ? 2, where M is the Moore bound (for the given values of maximum degree and diameter), that is, graphs of defect 2. Delorme and Pineda-Villavicencio conjectured that such graphs do not exist for diameter at least 3 if they have the so called 'cyclic defect'. Here we prove that this conjecture holds.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ELECTRONIC JOURNAL OF COMBINATORICS
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
—
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
1-5
UT code for WoS article
000288981700004
EID of the result in the Scopus database
—