All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nonexistence of graphs with cyclic defect

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43897049" target="_blank" >RIV/49777513:23520/11:43897049 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nonexistence of graphs with cyclic defect

  • Original language description

    In this note we consider graphs of order M ? 2, where M is the Moore bound (for the given values of maximum degree and diameter), that is, graphs of defect 2. Delorme and Pineda-Villavicencio conjectured that such graphs do not exist for diameter at least 3 if they have the so called 'cyclic defect'. Here we prove that this conjecture holds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ELECTRONIC JOURNAL OF COMBINATORICS

  • ISSN

    1077-8926

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    1-5

  • UT code for WoS article

    000288981700004

  • EID of the result in the Scopus database