Homomorphisms of Cayley graphs and Cycle Double Covers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369478" target="_blank" >RIV/00216208:11320/17:10369478 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.endm.2017.07.018" target="_blank" >http://dx.doi.org/10.1016/j.endm.2017.07.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2017.07.018" target="_blank" >10.1016/j.endm.2017.07.018</a>
Alternative languages
Result language
angličtina
Original language name
Homomorphisms of Cayley graphs and Cycle Double Covers
Original language description
We study the following conjecture of Matt DeVos: If there is a graph homomorphism from Cayley graph $Cay(M, B)$ to another Cayley graph $Cay(M', B')$ then every graph with $(M,B)$-flow has $(M',B')$-flow. This conjecture was originally motivated by the flow-tension duality. We show that a natural strengthening of this conjecture does not hold in all cases but we conjecture that it still holds for an interesting subclass of them and we prove a partial result in this direction. We also show that the original conjecture implies the existence of oriented cycle double cover with a small number of cycles.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
August 2017
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
639-645
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85026771128