Homomorphisms of Cayley Graphs and Cycle Double Covers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423619" target="_blank" >RIV/00216208:11320/20:10423619 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X~5x71eFFY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X~5x71eFFY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/8456" target="_blank" >10.37236/8456</a>
Alternative languages
Result language
angličtina
Original language name
Homomorphisms of Cayley Graphs and Cycle Double Covers
Original language description
We study the following conjecture of Matt DeVos: If there is a graph homomorphism from a Cayley graph Cay(M, B) to another Cayley graph Cay(M', B') then every graph with an (M, B)-flow has an (M', B')-flow. This conjecture was originally motivated by the flow-tension duality. We show that a natural strengthening of this conjecture does not hold in all cases but we conjecture that it still holds for an interesting subclass of them and we prove a partial result in this direction. We also show that the original conjecture implies the existence of an oriented cycle double cover with a small number of cycles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-21082S" target="_blank" >GA19-21082S: Graphs and their algebraic properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
P2.2
UT code for WoS article
000526057500002
EID of the result in the Scopus database
2-s2.0-85083587123