All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Word-Semantic Lattices for Spoken Language Understanding

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926626" target="_blank" >RIV/49777513:23520/15:43926626 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7178976&tag=1" target="_blank" >http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7178976&tag=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2015.7178976" target="_blank" >10.1109/ICASSP.2015.7178976</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Word-Semantic Lattices for Spoken Language Understanding

  • Original language description

    The paper presents a method for converting word-based automatic speech recognition (ASR) lattices into word-semantic (W-SE) lattices that contain original words together with a partial semantic information – so-called semantic entities. Semantic entity detection algorithm generates semantic entities based on the expert-defined knowledge. The generated W-SE lattices have smaller vocabulary and consequently reduce the sparsity of the training data. The format of the W-SE lattices also naturally preserves the inherent uncertainty of the ASR output that can be exploited in subsequent dialog modules. The presented technique employs the framework of weighted finite state transducers which allows for efficient optimization of word-semantic lattices. We have evaluated the method in two different spoken language understanding tasks and obtained more than 10% reduction of concept error rate in comparison with using 1-best word hypothesis in both of those tasks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing

  • ISBN

    978-1-4673-6997-8

  • ISSN

    1520-6149

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    5266-5270

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Brisbane, Australia

  • Event date

    Apr 19, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000427402905077