All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semantic Entity Detection From Multiple ASR Hypotheses Within The WFST Framework

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43920759" target="_blank" >RIV/49777513:23520/13:43920759 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ASRU.2013.6707710" target="_blank" >http://dx.doi.org/10.1109/ASRU.2013.6707710</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ASRU.2013.6707710" target="_blank" >10.1109/ASRU.2013.6707710</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semantic Entity Detection From Multiple ASR Hypotheses Within The WFST Framework

  • Original language description

    The paper presents a novel approach to named entity detection from ASR lattices. Since the described method not only detects the named entities but also assigns a detailed semantic interpretation to them, we call our approach the semantic entity detection. All the algorithms are designed to use automata operations defined within the framework of weighted finite state transducers (WFST) the ASR lattices are nowadays frequently represented as weighted acceptors. The expert knowledge about the semantics ofthe task at hand can be first expressed in the form of a context free grammar and then converted to the FST form. We use a WFST optimization to obtain compact representation of the ASR lattice. The WFST framework also allows to use the word confusion networks as another representation of multiple ASR hypotheses. That way we can use the full power of composition and optimization operations implemented in the OpenFST toolkit for our semantic entity detection algorithm. The devised method

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/TE01020197" target="_blank" >TE01020197: Centre for Applied Cybernetics 3</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE 2013 Workshop on Automatic Speech Recognition and Understanding

  • ISBN

    978-1-4799-2756-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    84-89

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Piscataway

  • Event location

    Olomouc

  • Event date

    Dec 8, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article