Functional Dual Adaptive Control with Recursive Gaussian Process Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926639" target="_blank" >RIV/49777513:23520/15:43926639 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1742-6596/659/1/012006" target="_blank" >http://dx.doi.org/10.1088/1742-6596/659/1/012006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/659/1/012006" target="_blank" >10.1088/1742-6596/659/1/012006</a>
Alternative languages
Result language
angličtina
Original language name
Functional Dual Adaptive Control with Recursive Gaussian Process Model
Original language description
The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GA15-12068S" target="_blank" >GA15-12068S: Adaptive Approaches to State Estimation of Nonlinear Stochastic Systems</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Journal of Physics: Conference Series, Volume 659
ISBN
—
ISSN
1742-6588
e-ISSN
1742-6596
Number of pages
11
Pages from-to
1-11
Publisher name
IOP Publishing
Place of publication
Bristol
Event location
Plzeň, Česká Republika
Event date
Nov 19, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000368103000006