All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identification of State and Measurement Noise Covariance Matrices using Nonlinear Estimation Framework

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926641" target="_blank" >RIV/49777513:23520/15:43926641 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1742-6596/659/1/012057" target="_blank" >http://dx.doi.org/10.1088/1742-6596/659/1/012057</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/659/1/012057" target="_blank" >10.1088/1742-6596/659/1/012057</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identification of State and Measurement Noise Covariance Matrices using Nonlinear Estimation Framework

  • Original language description

    The paper deals with identification of the noise covariance matrices affecting the linear system described by the state-space model. In particular, the stress is laid on the autocovariance least-squares method which belongs into to the class of the correlation methods. The autocovariance least-squares method is revised for a general linear stochastic dynamic system and is implemented within the publicly available MATLAB toolbox Nonlinear Estimation Framework. The toolbox then offers except of a large set of state estimation algorithms for prediction, filtering, and smoothing, the integrated easy-to-use method for the identification of the noise covariance matrices. The implemented method is tested by a thorough Monte-Carlo simulation for various user-defined options of the implemented method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA15-12068S" target="_blank" >GA15-12068S: Adaptive Approaches to State Estimation of Nonlinear Stochastic Systems</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Journal of Physics: Conference Series, Volume 659

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    1-12

  • Publisher name

    IOP Publishing

  • Place of publication

    Bristol

  • Event location

    Plzeň, Česká Republika

  • Event date

    Nov 19, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000368103000057