The Influence of Thresholding Strategy on Multi-label Topic Identification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43927059" target="_blank" >RIV/49777513:23520/15:43927059 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11025/21317" target="_blank" >http://hdl.handle.net/11025/21317</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Influence of Thresholding Strategy on Multi-label Topic Identification
Original language description
In this paper, we are demonstrating the influence of described thresholding strategies on a multi-label topic identification of Czech news articles. Results suggested, that we can improve (in terms of F1 score) the performance of multli-label topic identification on our data by 4.58% relatively when using label-wise thresholding and roughly the same when using sample-wise thresholding. An interesting result is that in the case of sample-wise thresholding, the performance can be further improved just by sorting scores on the input of the trained regressor.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů