All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving Multi-label Document Classification of Czech News Articles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926586" target="_blank" >RIV/49777513:23520/15:43926586 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-24033-6_35" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-24033-6_35</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-24033-6_35" target="_blank" >10.1007/978-3-319-24033-6_35</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving Multi-label Document Classification of Czech News Articles

  • Original language description

    In this paper, we present our improvement of a multi-label document classifier for text filtering in a corpus containing Czech news articles, where relevant topics of an arbitrary document are to be assigned automatically. Different vector space models, different classifiers and different thresholding strategies were investigated and the performance was measured in terms of sample-wise average F1 score. Results of this paper show that we can improve the performance of our baseline naive Bayes classifier by 25% relatively when using linear SVC classifier with sublinear tf-idf vector space model, and another 6.1% relatively when using regressor-based sample-wise thresholding strategy.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue, 18th International Conference, TSD 2015, Pilsen,Czech Republic, September 14-17, 2015, Proceedings

  • ISBN

    978-3-319-24032-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    307-315

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Plzeň, Czech Republic

  • Event date

    Sep 14, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000365947800035