Degree Diameter Problem on Triangular Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43927110" target="_blank" >RIV/49777513:23520/15:43927110 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Degree Diameter Problem on Triangular Networks
Original language description
The degree diameter problem involves finding the largest graph (in terms of number of vertices) subject to constraints on the degree and the diameter of the graph. Beyond the degree constraint there is no restriction on the number of edges (apart from keeping the graph simple) so the resulting graph may be thought of as being embedded in the complete graph. In a generalisation of this problem, the graph is considered to be embedded in some connected host graph. This article considers embedding the graphin the triangular grid and provides some exact values and some upper and lower bounds for the optimal graphs. Moreover, all the optimal graphs are 2-connected, without this constraints no larger graphs were found.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Australasian Journal of Combinatorics
ISSN
2202-3518
e-ISSN
—
Volume of the periodical
63
Issue of the periodical within the volume
3
Country of publishing house
AU - AUSTRALIA
Number of pages
13
Pages from-to
333-345
UT code for WoS article
000364578700024
EID of the result in the Scopus database
—