Degree diameter problem on honeycomb networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43923560" target="_blank" >RIV/49777513:23520/14:43923560 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.dam.2014.07.012" target="_blank" >http://dx.doi.org/10.1016/j.dam.2014.07.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2014.07.012" target="_blank" >10.1016/j.dam.2014.07.012</a>
Alternative languages
Result language
angličtina
Original language name
Degree diameter problem on honeycomb networks
Original language description
The degree diameter problem involves finding the largest graph (in terms of the number of vertices) subject to constraints on the degree and the diameter of the graph. Beyond the degree constraint there is no restriction on the number of edges (apart from keeping the graph simple) so the resulting graph may be thought of as being embedded in the complete graph. In a generalization of this problem, the graph is considered to be embedded in some connected host graph, in this paper the honeycomb network. We consider embedding the graph in the k-dimensional honeycomb grid and provide upper and lower bounds for the optimal graph. The particular cases of dimensions 2 and 3 are examined in detail.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DISCRETE APPLIED MATHEMATICS
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
179
Issue of the periodical within the volume
December
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
139-151
UT code for WoS article
000347131300013
EID of the result in the Scopus database
—