On a generalization of Thue sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43927249" target="_blank" >RIV/49777513:23520/15:43927249 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a generalization of Thue sequences
Original language description
It was conjectured that k +2 symbols are enough to construct an arbitrarily long k-Thue sequence and shown that the conjecture holds for k=2,3 a 5. In this paper we present a construction of k-Thue sequences on 2k symbols. Additionally, we define cyclick-Thue sequences and present a construction of such sequences of arbitrary lengths when k = 2 using four symbols, with three exceptions. As a corollary, we obtain tight bounds for total Thue colorings of cycles.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ELECTRONIC JOURNAL OF COMBINATORICS
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000354969600007
EID of the result in the Scopus database
—