Positive and negative solutions of one-dimensional beam equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43902953" target="_blank" >RIV/49777513:23520/16:43902953 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0893965915002141" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0893965915002141</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2015.06.019" target="_blank" >10.1016/j.aml.2015.06.019</a>
Alternative languages
Result language
angličtina
Original language name
Positive and negative solutions of one-dimensional beam equation
Original language description
In this paper, we show that the usual limitations on the coefficient c = c(x) in the linear problem u^(4)+c(x)u = h(x) with Navier boundary conditions and nonnegative right hand side h are not necessary to get the existence of positive or negative solutions whenever c(x) is a nonconstant function.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS LETTERS
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
25 July 2016
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
1-7
UT code for WoS article
000362612600001
EID of the result in the Scopus database
—