On Star-Wheel Ramsey Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43925531" target="_blank" >RIV/49777513:23520/16:43925531 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00373-015-1594-6" target="_blank" >http://link.springer.com/article/10.1007%2Fs00373-015-1594-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-015-1594-6" target="_blank" >10.1007/s00373-015-1594-6</a>
Alternative languages
Result language
angličtina
Original language name
On Star-Wheel Ramsey Numbers
Original language description
In this note, we determined the Ramsey number R(K(1,n),W(m)) for even m with n +2 LESS-THAN OR EQUAL TO m LESS-THAN OR EQUAL TO 2n MINUS SIGN 2, where W(m) is the wheel on m +1 vertices, i.e., the graph obtained from a cycle C(m) by adding a vertex v adjacent to all vertices of the C(m).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
GRAPHS AND COMBINATORICS
ISSN
0911-0119
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
2
Country of publishing house
JP - JAPAN
Number of pages
7
Pages from-to
733-739
UT code for WoS article
000371081000020
EID of the result in the Scopus database
—