On path-quasar Ramsey numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43925216" target="_blank" >RIV/49777513:23520/14:43925216 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/umcsmath-2015-0002" target="_blank" >http://dx.doi.org/10.1515/umcsmath-2015-0002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/umcsmath-2015-0002" target="_blank" >10.1515/umcsmath-2015-0002</a>
Alternative languages
Result language
angličtina
Original language name
On path-quasar Ramsey numbers
Original language description
In this note, we study the Ramsey numbers R(Pn,K1LOGICAL ORFm), where Fm is a linear forest on m vertices. We determine the exact values of R(Pn,K1LOGICAL ORFm) for the cases m LESS-THAN OR EQUAL TO n and m GREATER-THAN OR EQUAL TO 2n, and for the case that Fm has no odd component. Moreover, we give a lower bound and an upper bound for the remaining case.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA SECTIO A
ISSN
2083-7402
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
7
Pages from-to
11-17
UT code for WoS article
—
EID of the result in the Scopus database
—