A nonsmooth Robinson's inverse function theorem in Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43928032" target="_blank" >RIV/49777513:23520/16:43928032 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10107-015-0877-2" target="_blank" >http://dx.doi.org/10.1007/s10107-015-0877-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-015-0877-2" target="_blank" >10.1007/s10107-015-0877-2</a>
Alternative languages
Result language
angličtina
Original language name
A nonsmooth Robinson's inverse function theorem in Banach spaces
Original language description
In a recent paper, Izmailov (Math Program Ser A 147:581-590, 2014) derived an extension of Robinson's implicit function theorem for nonsmooth generalized equations in finite dimensions, which reduces to Clarke's inverse function theorem when the generalized equation is just an equation. Páles (J Math Anal Appl 209:202-220, 1997) gave earlier a generalization of Clarke's inverse function theorem to Banach spaces by employing Ioffe's strict pre-derivative. In this paper we generalize both theorems of Izmailov and Páles to nonsmooth generalized equations in Banach spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICAL PROGRAMMING
ISSN
0025-5610
e-ISSN
—
Volume of the periodical
156
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
257-270
UT code for WoS article
000370174400009
EID of the result in the Scopus database
—