A Comparative Study of LOWESS and RBF Approximations for Visualization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43928984" target="_blank" >RIV/49777513:23520/16:43928984 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-42108-7_31" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42108-7_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-42108-7_31" target="_blank" >10.1007/978-3-319-42108-7_31</a>
Alternative languages
Result language
angličtina
Original language name
A Comparative Study of LOWESS and RBF Approximations for Visualization
Original language description
Approximation methods are widely used in many fields and many techniques have been published already. This comparative study presents a comparison of LOWESS (Locally weighted scatterplot smoothing) and RBF (Radial Basis Functions) approximation methods on noisy data as they use different approaches. The RBF approach is generally convenient for high dimensional scattered data sets. The LOWESS method needs finding a subset of nearest points if data are scattered. The experiments proved that LOWESS approximation gives slightly better results than RBF in the case of lower dimension, while in the higher dimensional case with scattered data the RBF method has lower computational complexity.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LH12181" target="_blank" >LH12181: Development of Algorithms for Computer Graphics and CAD/CAM systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computational Science and Its Applications - ICCSA 2016
ISBN
978-3-319-42107-0
ISSN
0302-9743
e-ISSN
—
Number of pages
15
Pages from-to
405-419
Publisher name
Springer
Place of publication
Cham
Event location
Beijing
Event date
Jul 4, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000381934000031