Novel RBF Approximation Method Based on Geometrical Properties for Signal Processing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43958008" target="_blank" >RIV/49777513:23520/19:43958008 - isvavai.cz</a>
Result on the web
<a href="http://afrodita.zcu.cz/~skala/publications.htm" target="_blank" >http://afrodita.zcu.cz/~skala/publications.htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Informatics47936.2019.9119276" target="_blank" >10.1109/Informatics47936.2019.9119276</a>
Alternative languages
Result language
angličtina
Original language name
Novel RBF Approximation Method Based on Geometrical Properties for Signal Processing
Original language description
Interpolation and approximation methods are widely used in many areas. They can be divided to methods based on meshing (tessellation) of the data domain and to meshless (meshfree) methods, which do not require the domain tessellation of scattered data. Scattered n-dimensional data radial basis function (RBF) interpolation and approximation leads to a solution of linear system of equations. This contribution presents a new approach to the RBF approximation based on analysis of geometrical properties of signals, i.e. sampled curves. Also a newly developed radial basis function was used and proved better precision of approximation. Experimental comparison of several RBF functions (Gauss, Thin-Plate Spline, CS-RBF and a new proposed RBF) is described with analysis of their properties. Special attention was taken to the precision of approximation and conditionality issues. The proposed approach can be extended to a higher dimensional case and for vector data, e.q. fluid flow, too.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless methods for large scattered spatio-temporal vector data visualization</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
INFORMATICS 2019
ISBN
978-1-72813-181-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
451-456
Publisher name
IEEE
Place of publication
Piscataway
Event location
Poprad
Event date
Nov 20, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000610452900074