All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

RBF Approximation of Big Data Sets with Large Span of Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43952025" target="_blank" >RIV/49777513:23520/17:43952025 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/MCSI.2017.44" target="_blank" >http://dx.doi.org/10.1109/MCSI.2017.44</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MCSI.2017.44" target="_blank" >10.1109/MCSI.2017.44</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    RBF Approximation of Big Data Sets with Large Span of Data

  • Original language description

    This contribution presents a new analysis of properties of the Radial Bases Functions (RBF) interpolation and approximation related to data sets with a large data span. The RBF is a convenient method for scattered d-dimensional interpolation and approximation, e.g. for solution of partial differential equations (PDE) etc. The RBF method leads to a solution of linear system of equations and computational complexity of solution is nearly independent of a dimensionality of a problem solved. However, the RBF methods are usually applied for small data sets with a small span of geometric coordinates. In this paper, we show influence of polynomial reproduction mostly used in RBF interpolation and approximation methods in the context of large span data sets. The experiments made proved expected theoretical results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless methods for large scattered spatio-temporal vector data visualization</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematics and Computers in Sciences and in Industry (MCSI), 2017 Fourth International Conference on

  • ISBN

    978-1-5386-2820-1

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    7

  • Pages from-to

    212-218

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Corfu, Greece

  • Event date

    Aug 24, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000452189900038