UWB at SemEval-2016 Task 1: Semantic textual similarity using lexical, syntactic, and semantic information
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929278" target="_blank" >RIV/49777513:23520/16:43929278 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
UWB at SemEval-2016 Task 1: Semantic textual similarity using lexical, syntactic, and semantic information
Original language description
We present our UWB system for Semantic Textual Similarity (STS) task at SemEval 2016. Given two sentences, the system estimates the degree of their semantic similarity. We use state-of-the-art algorithms for the meaning representation and combine them with the best performing approaches to STS from previous years. These methods benefit from various sources of information, such as lexical, syntactic, and semantic. In the monolingual task, our system achieve mean Pearson correlation 75.7% compared with human annotators. In the cross-lingual task, our system has correlation 86.3% and is ranked first among 26 systems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Workshop SemEval 2016
ISBN
978-1-941643-95-2
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
588-594
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg
Event location
San Diego
Event date
Jun 16, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—