All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluation Datasets for Cross-lingual Semantic Textual Similarity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43963751" target="_blank" >RIV/49777513:23520/21:43963751 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2021.ranlp-main.59.pdf" target="_blank" >https://aclanthology.org/2021.ranlp-main.59.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.26615/978-954-452-072-4_059" target="_blank" >10.26615/978-954-452-072-4_059</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluation Datasets for Cross-lingual Semantic Textual Similarity

  • Original language description

    Semantic textual similarity (STS) systems estimate the degree of the meaning similarity between two sentences. Cross-lingual STS systems estimate the degree of the meaning similarity between two sentences, each in a different language. State-of-the-art algorithms usually employ a strongly supervised, resource-rich approach difficult to use for poorly-resourced languages. However, any approach needs to have evaluation data to confirm the results. In order to simplify the evaluation process for poorly-resourced languages (in terms of STS evaluation datasets), we present new datasets for cross-lingual and monolingual STS for languages without this evaluation data. We also present the results of several state-of-the-art methods on these data which can be used as a baseline for further research. We believe that this article will not only extend the current STS research to other languages, but will also encourage competition on this new evaluation data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Deep Learning for Natural Language Processing Methods and Applications

  • ISBN

    978-954-452-072-4

  • ISSN

    1313-8502

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    524-529

  • Publisher name

    INCOMA, Ltd.

  • Place of publication

    Shoumen

  • Event location

    Shoumen, Bulgaria

  • Event date

    Sep 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article