Linear transformations for cross-lingual semantic textual similarity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43956550" target="_blank" >RIV/49777513:23520/20:43956550 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0950705119302941" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705119302941</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2019.06.027" target="_blank" >10.1016/j.knosys.2019.06.027</a>
Alternative languages
Result language
angličtina
Original language name
Linear transformations for cross-lingual semantic textual similarity
Original language description
Cross-lingual semantic textual similarity systems estimate the degree of the meaning similarity between two sentences, each in a different language. State-of-the-art algorithms usually employ machine translation and combine vast amount of features, making the approach strongly supervised, resource rich, and difficult to use for poorly-resourced languages. In this paper, we study linear transformations, which project monolingual semantic spaces into a shared space using bilingual dictionaries. We propose a novel transformation, which builds on the best ideas from prior works. We experiment with unsupervised techniques for sentence similarity based only on semantic spaces and we show they can be significantly improved by the word weighting. Our transformation outperforms other methods and together with word weighting leads to very promising results on several datasets in different languages.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Knowledge-Based Systems
ISSN
0950-7051
e-ISSN
—
Volume of the periodical
187
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
1-9
UT code for WoS article
000501653900008
EID of the result in the Scopus database
2-s2.0-85068031029