Global bifurcation of positive solutions for a class of superlinear elliptic systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929902" target="_blank" >RIV/49777513:23520/16:43929902 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0022039616302091" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0022039616302091</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2016.08.005" target="_blank" >10.1016/j.jde.2016.08.005</a>
Alternative languages
Result language
angličtina
Original language name
Global bifurcation of positive solutions for a class of superlinear elliptic systems
Original language description
We consider a system of semilinear equations of the formMINUS SIGN ?u=?f(v)in?;MINUS SIGN ?v=?g(u)in?;u=0=vonPARTIAL DIFFERENTIAL?,} where ?ELEMENT OFR is the bifurcation parameter, ?SUBSET OFRN; NGREATER-THAN OR EQUAL TO2 is a bounded domain with smooth boundary PARTIAL DIFFERENTIAL?. The nonlinearities f,g:RRIGHTWARDS ARROW(0,+oo) are nondecreasing continuous functions that have superlinear growth at infinity. We use bifurcation theory, combined with an approximation scheme, to establish the existence of an unbounded branch of positive solutions, emanating from the origin, which is bounded in positive ?-direction. If in addition, ? is convex and f,gELEMENT OFC1 satisfy certain subcriticality condition, we show that the branch must bifurcate from infinity at ?=0.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
261
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
5719-5733
UT code for WoS article
000384874400018
EID of the result in the Scopus database
2-s2.0-84992135214