Direction and stability of bifurcating solutions for a Signorini problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F15%3A43889018" target="_blank" >RIV/60076658:12310/15:43889018 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/15:00437684 RIV/49777513:23520/15:43928430
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0362546X14003228" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0362546X14003228</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2014.09.032" target="_blank" >10.1016/j.na.2014.09.032</a>
Alternative languages
Result language
angličtina
Original language name
Direction and stability of bifurcating solutions for a Signorini problem
Original language description
The equation Delta u+lambda u+ g(lambda, u)u = 0 is considered in a bounded domain in R-2 with a Signorini condition on a straight part of the boundary and with mixed boundary conditions on the rest of the boundary. It is assumed that g(lambda, 0) = 0 for lambda is an element of R, lambda is a bifurcation parameter. A given eigenvalue of the linearized equation with the same boundary conditions is considered. A smooth local bifurcation branch of non-trivial solutions emanating at lambda(0) from trivialsolutions is studied. We show that to know a direction of the bifurcating branch it is sufficient to determine the sign of a simple expression involving the corresponding eigenfunction u(0). In the case when lambda(0) is the first eigenvalue and the branch goes to the right, we show that the bifurcating solutions are asymptotically stable in W-1,W-2-norm. The stability of the trivial solution is also studied and an exchange of stability is obtained.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Application
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
113
Issue of the periodical within the volume
JAN 2015
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
357-371
UT code for WoS article
000345687300020
EID of the result in the Scopus database
—