All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Direction and stability of bifurcating solutions for a Signorini problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F15%3A43889018" target="_blank" >RIV/60076658:12310/15:43889018 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/15:00437684 RIV/49777513:23520/15:43928430

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0362546X14003228" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0362546X14003228</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.na.2014.09.032" target="_blank" >10.1016/j.na.2014.09.032</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Direction and stability of bifurcating solutions for a Signorini problem

  • Original language description

    The equation Delta u+lambda u+ g(lambda, u)u = 0 is considered in a bounded domain in R-2 with a Signorini condition on a straight part of the boundary and with mixed boundary conditions on the rest of the boundary. It is assumed that g(lambda, 0) = 0 for lambda is an element of R, lambda is a bifurcation parameter. A given eigenvalue of the linearized equation with the same boundary conditions is considered. A smooth local bifurcation branch of non-trivial solutions emanating at lambda(0) from trivialsolutions is studied. We show that to know a direction of the bifurcating branch it is sufficient to determine the sign of a simple expression involving the corresponding eigenfunction u(0). In the case when lambda(0) is the first eigenvalue and the branch goes to the right, we show that the bifurcating solutions are asymptotically stable in W-1,W-2-norm. The stability of the trivial solution is also studied and an exchange of stability is obtained.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-00863S" target="_blank" >GA13-00863S: Semilinear and Quasilinear Differential Equations: Existence and Multiplicity Results</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nonlinear Analysis: Theory, Methods &amp; Application

  • ISSN

    0362-546X

  • e-ISSN

  • Volume of the periodical

    113

  • Issue of the periodical within the volume

    JAN 2015

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    357-371

  • UT code for WoS article

    000345687300020

  • EID of the result in the Scopus database