Smooth bifurcation branches of solutions for a Signorini problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00354842" target="_blank" >RIV/67985840:_____/11:00354842 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/11:43881736
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Smooth bifurcation branches of solutions for a Signorini problem
Original language description
We study a bifurcation problem for the equation ?u+?u+g(?,u)u=0 on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. Here is the bifurcation parameter, and g is a small perturbation. We prove, under certain assumptions concerning an eigenfunction u0 corresponding to an eigenvalue ?0 of the linearized equation with the same nonlinear boundary conditions, the existence of a local smooth branch of nontrivial solutions bifurcating from the trivial solutions at ?0 in the direction of u0. The contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tool of the proof is a local equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP and of two scalar equations. To this system classical Crandall?Rabinowitz type local bifurcation techniques (scaling and Implicit Function Theorem) are applied.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190805" target="_blank" >IAA100190805: Bifurcation and parameter dependence for unilateral boundary value problems and interpretation in natural sciences</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
74
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
25
Pages from-to
—
UT code for WoS article
000286178200031
EID of the result in the Scopus database
—