Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43929058" target="_blank" >RIV/49777513:23520/17:43929058 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00190-016-0951-4" target="_blank" >http://dx.doi.org/10.1007/s00190-016-0951-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00190-016-0951-4" target="_blank" >10.1007/s00190-016-0951-4</a>
Alternative languages
Result language
angličtina
Original language name
Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components
Original language description
New spherical integral formulas among components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second and third-order gravitational tensors and initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (i) vertical-vertical, (ii) vertical-horizontal and (iii) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the correctness of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
<a href="/en/project/GA15-08045S" target="_blank" >GA15-08045S: Methods for validation, analysis and application of data from satellite missions in geodesy and geophysics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF GEODESY
ISSN
0949-7714
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
167-194
UT code for WoS article
000394264400004
EID of the result in the Scopus database
2-s2.0-84990854042